Music Analysis Model
This notebook does basic analysis of song metadata taken from spotify. The data contains numeric metrics generated by spotify which measure the songs' danceability, mood, liveness, etc. The data also
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn import datasets, linear_model
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from sklearn.manifold import TSNE
%matplotlib inline
data_frame = pd.read_csv("../input/data.csv")
data_frame = data_frame.drop("Unnamed: 0", axis="columns")
data_frame.head()x = data_frame["danceability"].values
y = data_frame["valence"].values
x = x.reshape(x.shape[0], 1)
y = y.reshape(y.shape[0], 1)
regr = linear_model.LinearRegression()
regr.fit(x, y)
fig = plt.figure(figsize=(6, 6))
fig.suptitle("Correlation between danceability and song mood")
ax = plt.subplot(1, 1, 1)
ax.scatter(x, y, alpha=0.5)
ax.plot(x, regr.predict(x), color="red", linewidth=3)
plt.xticks(())
plt.yticks(())
ax.xaxis.set_major_locator(ticker.MultipleLocator(0.1))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.02))
ax.yaxis.set_major_locator(ticker.MultipleLocator(0.1))
ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.02))
plt.xlabel("danceability")
plt.ylabel("valence")
plt.show()

This is where the fun beginsΒΆ



Last updated